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The reaction of radiation on the scattering of electrons is treated on the basis of Heitler's 
theory of radiation damping. Because in this theory no account is taken of virtual processes, 
the infra-red catastrophe reappears, and the theory gives a total cross section for scattering, 
which depends critically on the longest wave-length radiation that can be emitted, and which 
does not agree with the correspondence principle. I t seems probable that only by a modifica­
tion of present theories specific to the domain of high energies and small distances will a satis­
factory solution of this simple problem be found. 

1. THE INFRA-RED CATASTROPHE IN 
THE ORDINARY THEORY 

AMONG the many problems involving radia­
tion damping there is one which has been 

the subject of much study and to which no 
satisfactory answer has yet been obtained. This 
is the reaction of radiation on the scattering of 
an electron. 

If we consider the scattering of an electron in 
a fixed potential field, which we may for con­
venience assume to be weak, then the scattering 
cross section of the electron is given by 

( m \ 2 

Vkp)da>, (1) 
2irh2 / 

where k and p are initial and final momenta, 

Vkp^fdrVe^-V'1*, (la) 

dp — p2dpd<tit m is the mass, V the scattering 
potential. One would expect that the reaction 
of radiation emitted in the collision might not 
affect the probability of scattering for low ve­
locity of the electron because the recoil of the 
emitted radiation should be negligible. But as 
the velocity of the electron is increased, correc­
tions of order (v/c)A should appear in the formula 
for scattering, which are proportional to the 
square of the electron's charge. 

It is clear that these corrections, while pre­
sumably small, are in principle subject to direct 
experimental study. The theory of the inter­
action of radiation with matter should make it 
possible to compute them. As is well known, if 
one applies the accepted principles of quantum 
electrodynamics to this problem, one does not 
obtain a reasonable or a finite answer. We should 
like to discuss the status of this problem from a 
somewhat new point of view in order that we can 
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see how to apply to it the proposals which have 
been put forward by Heitler1 for eliminating the 
divergence difficulties of the present theory. In 
fact, it seems not unreasonable to apply all 
proposed modifications of electrodynamics to 
this simple problem as a sort of criterion of their 
adequacy. Judged by this criterion, the pro­
posals put forth by Heitler must be regarded as 
unsatisfactory. 

The difficulties of this problem first appeared 
in the form of the so-called infra-red catastrophe. 
In fact, if one computes by perturbation methods 
the probability that an electron will be scattered 
with the emission of a quantum of frequency q 
one obtains the cross section 

2e2 (p~k)2dq 
drd<r = da, (2) 

3whc m2c2 q 

whose integral will diverge logarithmically for 
small q. This problem has been analyzed in 
detail by Bloch and Nordsieck.2 These authors 
showed that it is in fact unlikely that a scattering 
process will take place with the emission of 0, 1, 
or, in fact, any finite number of quanta. Specifi­
cally by a rigorous but non-relativistic solution 
of the problem for low frequencies, they showed 
that the increase in probability of scattering with 
the emission of a large number of quanta is 
quantitatively compensated by the decrease in 
the probability of elastic scattering or scattering 
with the emission of a smaller number of quanta. 
Thus, they obtained for the total probability of 
scattering the result (1), as one would indeed 
expect. 

The situation is, however, not as satisfactory 
as this, because Bloch and Nordsieck neglected 
the fact that only quanta which are energetically 
capable of emission, i.e., below the high fre­
quency limit given by the electron's kinetic 
energy, can in fact be emitted. 

Taking this circumstance into account but 
still calculating non-relativistically, Pauli and 
Fierz3 showed that the total cross section for 
scattering is not unchanged but would in fact 
vanish because the reaction on the probability of 

*W. Heitler, Proc. Camb. Phil. Soc. 37, 291 (1941); 
W. Heitler and H. W. Peng, Proc. Camb. Phil. Soc. 38, 
296 (1942). 

2 F . Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937). 
3 W. Pauli and M. Fierz, Nuovo Cimento 15, 167 (1938). 

elastic scattering is not adequately compensated 
by an increased probability for scattering with 
the emission of high frequency quanta. The 
divergences at high frequencies which appear in 
this treatment are again logarithmic. 

This subject was further clarified by Dancoff4 

who considered what effect relativistic correc­
tions would have on the high frequency terms of 
Pauli and Fierz. In doing this he necessarily 
confined his attention to terms of the second 
order in the electron's charge. His result was 
that these terms do not in general converge and 
that relativistic corrections could not be counted 
on to alter qualitatively the Pauli-Fierz result. 
The details of Dancoff's result further suggest 
that the theory made no sense at all. Thus the 
precise character of the infinite terms depends 
on whether the scattering potential is a four-
vector or a world scalar and whether the spin of 
the scattered particle is 0 or J. It is not possible 
to believe that in a problem involving only 
charges moving with low velocity these deduc­
tions can have any relation to reality. 

If we wish to consider this problem from the 
point of view proposed by Heitler and, at the 
same time, wish to be able to take relativistic 
effects into account, it will be necessary to 
analyze it in terms of the perturbation theory 
based on the smallness of the electron's charge. 
If for a moment we introduce a lowest frequency 
q, then it is easy to see the part played by the 
arguments of Bloch and Nordsieck, Pauli and 
Fierz, and Dancoff in determining the radiative 
corrections. This frequency q can, in fact, be 
fantastically low, and this situation may be 
realized by considering the collision problem as 
it would be if the electron and the scatterer 
were both enclosed in a conducting box of 
enormous dimensions. 

When we carry out this calculation we can at 
first neglect the contribution of processes in 
which more than one quantum is involved, or 
which involve a higher order of the electron's 
charge than the second. We then see that as 
long as the frequency q is smaller than the upper 
limit of the spectrum and the velocity of the 
electron is small compared to the velocity of 
light, two corrections to the scattering formula 

4S. M. Dancoff, Phys. Rev. 55, 959 (1939). 
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cancel. One of these is the positive correction 
which comes from the probability of emitting a 
quantum of frequency q 

e2 r dq 
5 ^ = J _ [pXq-kXq] 2 -d< r 

(3) 
2e2 ( p - k ) 2 ^ 

3whc m2c2 q 

The second is a negative correction to the 
probability of scattering without emitting a 
quantum of frequency <?, 

5eJ(T= —drdd. (4) 

This second correction may be formally ob­
tained in either of two ways, (a) It may be 
regarded as caused by the virtual emission and 
reabsorption of a quantum of frequency q during 
the scattering process; or (b) it may be regarded 
as a renormalization of the probability that the 
incident electron and the scattered electron will 
in fact have no quanta associated with them. 
These are, of course, equivalent descriptions. 
The finite result of Bloch an4 Nordsieck follows 
from an expansion of this simple argument to 
processes involving the multiple emission of 
quanta. The conclusion which appears above is 
maintained throughout but, of course, as Q is 
made smaller and smaller, the neglect of processes 
involving more than one quantum finally be­
comes inadmissible. The argument of Pauli and 
Fierz is then simply this: The probability of 
scattering with emission of radiation has no 
terms for frequency q>mv2/2h. On the other 
hand, the corrections to the probability of 
radiationless scattering continue for infinitely 
high q and lead to a logarithmic divergence. 
What Dancoff has done is to show that a con­
sistent relativistic calculation for these latter 
terms does not give generally finite results. 

We, therefore, see that the terms involving the 
virtual emission of quanta as a correction to the 
probability of radiationless scattering, and which 
may alternatively be derived as a sort of re-
normalization of the probability that electrons 
will be unaccompanied by quanta, have a dual 
r61e. For low frequencies they are needed to 
cancel the change in scattering probability 
caused by the emission of a quantum, a change 

which, as q goes to 0, becomes logarithmically 
infinite. For high frequencies these terms them­
selves have nothing left to cancel and give rise 
to a new logarithmic divergence. Thus, no pro­
posal which is as simple as either including or 
excluding these terms can give a finite result or 
a sensible one. This is the essential reason why 
Heitler's proposals give an unsatisfactory answer 
when applied to this simple problem. 

2. HEITLER'S THEORY: QUALITATIVE 
CONSIDERATIONS 

In the theory of radiation damping developed 
by Heitler and his collaborators, the transition 
probability from an initial state, i , to a final 
state, B, is determined by certain matrix ele­
ments UAB which are related to the matrix 
element HAB of the Hamiltonian by the equation 

UAB^HAB+IT J^c PCHACUCB- (5) 

The sum goes over all states, C, of the same 
energy as the initial and final state; pc is the 
density of states of the type C per unit energy. 

The cross section of a process leading from 
state A to B is given in Heitler's theory by 

2TT 
(TAB = PB | UAB |2, (6) 

where VA is the velocity of the incident particle, 
and PB is the density of states of type B per unit 
energy. Equation (6) is entirely analogous to 
the usual formula for the cross section except 
that the matrix element of the Hamiltonian is 
replaced by that of U. 

The last term in Eq. (5) represents the radia­
tion damping. Its function is to keep the transi­
tion matrix elements U finite even if the matrix 
elements of the Hamiltonian or the number of 
possible final states become very large. Heitler 
and his collaborators have proved in many 
papers on the meson theory that all cross sections 
actually remain finite at high energies while they 
would increase indefinitely without radiation 
damping. Also in our case, the result for the 
cross section is finite under all conditions, but 
we shall show that the result does not agree 
with physical expectations as discussed in Sec­
tion 1. 
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The matrix elements of the Hamiltonian 
relevant for our problem are of two types. The 
first type is the matrix element for simple 
scattering which is simply the Fourier component 
of the potential as given in Eq. (la), 

(k\H\?) = Vkp. (7) 

The other relevant matrix elements correspond 
to the emission of a quantum q together with 
the scattering of the electron from its initial 
momentum k to the final momentum p. These 
matrix elements are 

(k|H|pq) = Cr»(p-k)-u74 p , (8) 

where 

C=e/2irft*w<;* (8a) 

is a constant and u is a unit vector in the direc­
tion of polarization of the quantum. The matrix 
element (8) is normalized in such a way that the 
number of states of the quantum can be simply 
taken equal to the volume in g-space, dq = 4wq2dq. 
It is easily seen that (8) agrees with Eq. (3) of 
the first section. 

We shall now estimate the order of magnitude 
of the cross section for scattering with emission 
of radiation in first approximation; i.e., with the 
assumption that radiation is small. We shall also 
estimate the reaction of radiation on the radia-
tionless scattering, represented by the radiation 
damping term in (5). We shall find that in 
contrast to the theory outlined in Section 1, 
these two effects do not cancel, and we shall 
show that this lack of cancellation makes 
Heitler's theory unacceptable. 

In first approximation we may put U=H for 
transitions involving radiation. According to (6) 
and (8), the cross section for transitions with 
radiation will then be proportional to V2C2 (apart 
from other factors), which is of the order C2 

times the cross section for scattering without 
radiation. 

We now consider the correction which radia­
tion makes to the cross section for radiationless 
transitions by applying Eq. (5) to such transi­
tions. The radiation reaction is given by the 
contribution of states C containing a quantum, 
to the last term of (5). If we make again the 
approximation UCB = HCB for such states C, 
their contribution to the last term of (5) will be 

of the order V2C2. Since HAB is of order V, the 
relative magnitude of the radiation reaction term 
in (5) is of order VC2. This is smaller than the 
relative probability of collisions with radiation 
by a factor of the order V, which can be made 
arbitrarily small by a suitable choice of the 
scatterer. 

Actually, the effect of radiation reaction on 
the cross section CTAB is even smaller. This is 
because the damping term in (5) is imaginary 
in our present approximation while HAB is real. 
The effect of the damping term on the cross 
section akP is only of the relative order of V2C4 

which is extremely small because C contains the 
(small) electron charge as a factor. Actually, 
closer examination shows that the leading term 
in the radiation reaction is not given by inserting 
for UCB its first approximation, HOB- In the 
next approximation, an imaginary term appears 
in UCB which is of the relative order V compared 
with HCB, and this term gives a real contribution 
to the radiation damping term in Eq. (5). The 
effect of this, both on UAB and on the cross 
section <TAB, is of the relative order V2C2, whereas 
the cross section for emission of radiation was 
shown to be of the relative order C2. Therefore 
we see that the transitions with emission of 
radiation are not compensated by a correspond­
ing reduction of the cross section for scattering 
without radiation. 

This failure of compensation is especially 
serious because the total probability of emission 
of radiation diverges logarithmically for small 
frequencies q as was shown after Eq. (2). The 
total cross section for scattering with and without 
emission of radiation will, therefore, depend on 
the lower limit for the frequency, q, and thereby 
on the size of the imaginary box in which the 
radiator is considered to be enclosed. It is clear 
that such a dependence has no physical meaning. 
The Heitler theory of radiation damping in its 
present form therefore does not solve the problem 
of the infra-red catastrophe. Moreover, the red 
end of the spectrum does not appear to involve 
a profound problem which would require going 
beyond the scope of present quantum mechanics, 
so that the failure of Heitler's theory must be 
considered the more serious. 

Heitler's theory forbids, in fact, the customary 
solution of the infra-red problem as outlined in 
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Section 1. Heitler's prescription is to calculate 
the matrix element of each phenomenon only in 
the first approximation in which such a matrix 
element appears. This prescription serves to 
eliminate the usual divergences at high fre­
quencies. However, it also eliminates in our case 
the perturbation by virtual quanta of low fre­
quencies which gave the result (4), and thereby 
eliminated the infra-red catastrophe. In Heitler's 
theory this perturbation must be left out and 
there is, therefore, no adequate compensation 
for the scattering which takes place with emission 
of radiation. 

3. HEITLER'S THEORY: QUANTITATIVE 
CALCULATION 

For a quantitative discussion of Eq. (5) we 
shall make the simplifying assumption that the 
matrix elements of the scattering potential VkP 

do not depend on the direction of the vectors k 
and p. This amounts to assuming an interaction 
potential of range very short compared to the 
electron's wave-length. In addition we shall 
neglect the higher order effects such as the 
emission of two quanta or the scattering of 
quanta. We shall, however, make no restrictions 
on the magnitude of the electronic charge e and 
thereby of the constant C, nor any restrictions 
on the magnitude of the matrix element VkP = V. 

We shall first write down Eq. (5) explicitly for 
transitions with and without radiation. Using 
Dirac's notation for the matrix element, we have 
for transitions without radiation 

( p ' | y | p ) = ( p ' i # i p ) 

Awmp c do/' 

iirtnp n du" 
+iw—— —^q(p / | « |p / / q)(p # / q |£ / |p) . (9) 

(2wh)z J 4w 

For scattering with emission of radiation, we 
have the Heitler equation 

(P 'q |^ip) = (p 'qi# |p)+*V 
4irmp 

I 
du" 

4x (2Th)3 

X[(p'q|/ / |p"q)(p"q|*7|p) 

+ ( p ' q l W ) ( p " | £ / | p ) ] - do) 

In any matrix element, q means that a quantum 
exists in the respective state of the system; p or 
p' or p " denote the momentum of the electron, 
p the absolute value of the momentum which is 
the same for all states, the integral da)" is over 
all directions of p" and the integral dq is over 
magnitude, direction and polarization of the 
light quantum. 

These equations are to be solved with expres­
sions (7) and (8) for the matrix elements of the 
Hamiltonian. It is reasonable to assume, and it 
will in fact be shown to be true, that the solution 
will have the form 

(11) 
(P ,I^IP)=^I+^2P-PV^2 , 

(p'q| tf|p) = r f(Sip ' -u+J34p-u) . 

Inserting (11) into (10) we obtain 

Bip'-u+S*p-u = 7C(p ' -p ) -u 

imp r do)f 

2T¥ J 4TT 

+ F C ( p / - p / / ) - u ( i 4 i + i l * , / - p / ^ ) ] . (12) 

imp r da)" 
+ [ I / ( £ l P " - u + £ 2 p - u 

2irhz J 4TT 

The integration over da" is elementary. The 
terms containing only one factor involving p " 
vanish upon integration, whereas the average of 
a term of the form p"-a p"-b gives the result 
a-b/3 upon averaging. If we also introduce the 
abbreviation 

W= (mp/2irhz) V, (13) 

and then compare terms with p-u and terms 
with p'-u on both sides of the equation, we find: 

Bx=VC+iCWAh 

B2= - VC+iWB.-iWCAo/S. (14) 

In a similar way we obtain by inserting (11) 
into (9) and using the abbreviation (13) 

x\w(A1+A2p"-p/p*) + fd<Lcr* 

X C W - p ' ) - u ( £ , p " - u + 5 2 p - u ) l . (15) 
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Evaluation gives 

A1+A2(p'*p/p2) = V+iWAt 

Sw/ p ' p \ glnax 
+ iWCp2—l Bx-B2 I In . (16) 

3 V />2 / q 

In this equation gmax is the Duane-Hunt high 
frequency limit, qmax = mv2/2h. On the other 
hand, q is determined by the size of the box in 
which the system is considered to be enclosed. 
As this box becomes larger, the logarithm in the 
last term of Eq. (16) increases indefinitely. 

Combining Eq. (14) and (16) and using the 
abbreviation 

^=(87r/3)Cyin(gmax/g) 

2 e2/v\2 mv2 
I e*/vy 

3w hc\c/ 
In-

2hq 
(17) 

we find the following solutions for the ampli­
tudes : 

1+iWR 
n i -

A,= 

Bx = 

n -

1-

--V-
1 

1 -

-iW+W2R 

iWR 

-iW+WR/i 

VC 

iW+W2R' 

-VC 

(18) 

l-iW+W2R/3 

The quantity R contains the dependence on the 
size of the box and becomes infinite for infinite 
size; however, for any reasonable size, R is quite 
small. 

It will be noted that the amplitudes Ai, etc. 
all remain finite when R goes to infinity. This 
shows that in this case as in others the theory of 
radiation damping gives finite results. It will also 
be noted that for R= oo (strong coupling with 
radiation) the coefficients B\ and B2 become 
vanishingly small, so that in this limit the 
scattering process paradoxically will take place 
without the emission of radiation. (This result 
is not changed by integration over all frequencies 
q which can be emitted.) 

The result for the cross sections becomes quite 
complicated in the general case. For instance, 

the result for the cross section without emission 
of radiation takes the form 

d* = X2do>W2 

X 
1+iWR 

+ 
i WR cos a 

1 ~iW+ W2R 1 -iW+ W2R/3 
(19) 

where X — h/p is the de Broglie wave-length of 
the particle, divided by 2w. The further evalua­
tion simplifies in the limit of very large R in 
which case the result is 

d<r = X2da)(l+3 cos a)2 (20) 

The cross section thus becomes of the order X2 

which is reasonable. Generally it is clear that 
da is a quadratic function of cos a, the angular 
dependence being due to the interaction with 
radiation. 

We shall now discuss the result in more detail 
in the limit of small R and thereby substantiate 
the qualitative considerations of the last section. 
If we neglect all terms of higher relative order 
than W2R2, the cross section for scattering with­
out radiation (19) reduces to 

da = X2da*W2tl - W2-4VPR 
+ TF2i?2(l+cosa)2+---] (21) 

where a is the scattering angle (angle between p 
and k). Similarly, if we neglect terms of relative 
order W2R, we find from (18) 

Bl=-B2=VC(l+iW+--) (22) 

and the cross section for scattering with emission 
of radiation of frequency q becomes (cf. (11)) 

W2 dq 
?>4<r = X2dw C2—lp\\ - cos a) sin2 0, (23) 

1 + W2 qz 

where (5 is the angle between u and p— p'; or, if 
we integrate over all frequencies and directions 
for the emitted radiation: 

ar = 2X2da>RW2/(l + W2). (24) 

Therefore, the ratio of the scattering with 
radiation to the scattering without radiation is 
of the order R. On the other hand, the first 
correction which the radiation reaction makes 
to the cross section for radiationless scattering 
is of the relative order W2R. This correction, 
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therefore, does not compensate the cross section 
with emission of radiation and the total scatter­
ing will therefore depend on R, and thus on the 
minimum frequency which can be emitted. 

4. REMARK ON THE SCATTERING BY A 
POTENTIAL IN HEITLER'S THEORY 

If we disregard radiation and simply consider 
the scattering by a concentrated potential, the 
cross section becomes 

da = X2da>W2/(l + W2), (25) 

which follows from (19) by neglecting R. The 
expression (25) is obviously correct for small W 
in which case it is identical with the Born 
approximation. For strong potentials (large W) 
the cross section remains finite and attains the 
limiting value 4irX2 which is the correct upper 
limit if only spherically symmetrical scattering 
is considered. However, this limit will be attained 
regardless of the sign of the potential. Actually 
the result 4TTX2 is reasonable only for an attractive 
potential (and even in this case there should be 
fluctuations corresponding to resonance) while 
in the case of a repulsive potential the cross 
section can never become greater than 4wa2 

where a is the radius of the region in which the 
repulsive potential exists. This limit holds even 
for infinitely strong repulsion and is smaller 
than 4TTX2, because the assumption that the 
matrix elements for the scattering Vkp are inde­
pendent of the direction of k and p, is equivalent 
to assuming a<3CX. 

Moreover, Eq. (25) does not correctly describe 
the deviations from the Born approximation 
when this approximation first begins to fail. 
According to (25) the deviations should be of 
the relative order W2; whereas the actual theory 
gives a deviation of the order W(\/a) which is 
much larger. 

We do not regard this failure of Heitler's 
theory as significant because the theory was not 
intended to describe higher approximations for 
an arbitrary interaction such as the deviations 
from the Born approximation for an arbitrary 
potential. Heitler's theory was actually intended 
to apply to problems of radiation, and the 
matrix elements of the Hamiltonian should be 
taken from the fundamental theory of the inter­

action of particles with radiation. For this 
reason we consider the failure of the theory in 
the problem of the infra-red catastrophe as much 
more significant than its failure in the scattering 
problem. 

5. CONCLUSIONS 

The theory of radiation damping developed 
by Heitler and his collaborators gives, in all 
applications that have so far been made, a finite 
result for all cross sections even in the case of 
very large interactions. However, the application 
of the theory to the problem of the reaction of 
radiation on the scattering of electrons does not 
give a physically sensible result. The effect of 
radiation damping on the scattering without 
radiation is extremely small compared with the 
cross section for scattering with emission of 
radiation. The total scattering probability is 
therefore essentially the sum of the uncorrected 
scattering with and without radiation. The latter 
is subject to the infra-red catastrophe and de­
pends on the lower limit q of the frequencies 
which can be emitted, becoming infinite as q 
goes to zero. It is evident that such a dependence 
can have no physical reality and that the prob­
ability of electron scattering should not depend 
on its ability to emit radio waves of extremely 
long wave-length. 

In the customary theory as outlined in Section 
1, the infra-red catastrophe does not occur be­
cause the scattering with emission of radiation 
is compensated by an equal decrease of the 
scattering without radiation. This decrease is 
brought about by the consideration of the in­
fluence of virtual quanta with long wave-length 
on the scattering without radiation. This amounts 
to the inclusion in the theory of matrix elements 
which are of higher order than is necessary to 
obtain a non-vanishing transition probability. 
The inclusion of such matrix elements is for­
bidden in Heitler's theory. It is seen that these 
matrix elements play an important role in 
avoiding the infra-red catastrophe. 

It is well known that the inclusion of the 
perturbation by the virtual quanta leads to 
divergent results due to the quanta of high 
frequency. This ultraviolet catastrophe is in­
herent in the customary theory and avoided in 
Heitler's theory of radiation damping. What we 
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have shown in this paper is that it is not possible 
to obtain a satisfactory answer either by in­
cluding the effects of virtual quanta as they are 
given by present theory or by excluding them 
entirely. They must be retained for long wave­
lengths. They must be eliminated or modified 
for short wave-lengths. 

This implies the existence of a critical wave­
length. There are at least three possibilities. 
There is (1) the wave-length corresponding to 
the Duane-Hunt limit, (2) that corresponding 
to the electron's Compton wave-length, or (3) a 
new length characteristic of a future theory and 
presumably smaller. 

The first of these possibilities, which might 
for instance amount to some method of system­
atic elimination of all virtual processes except 
those involving the creation of particles which 
in the actual problem are energetically capable 
of being created, would clearly involve a major 
and not correspondence theoretic change in the 

THE scattering of monoenergetic fast neu­
trons by boron has been investigated by 

Kikuchi and Aoki1'2 for d—d neutrons and by 
Leipunsky3 for photo-neutrons of 130-, 220-, and 
850-kev energy. In the present experiments the 
scattering of neutrons of energies from 0.2 to 
3 Mev was investigated for the two boron 
isotopes. 

The enriched material available was boron 
powder containing 53 percent B10. The powder 
was placed in a cylindrical brass container, 
2xf" i.d. T h e density of the powder was in-

* Now at the University of Wisconsin. 
** Now at Washington University. 
1 S. Kikuchi and H. Aoki, Proc. Phys. Math. Soc. Japan 

21, 75 (1939). 
2 H. Aoki, Proc. Phys. Math. Soc. Japan 21, 232 (1939). 
3 A. I. Leipunsky, J. Phys. U.S.S.R. 3, 231 (1940). 

formalism of quantum mechanics. In particular, 
it would mean giving up the existence of a 
Hamiltonian and a wave function calculable 
from it. It does not seem likely that this will 
prove to be the correct path. 

The results of Dancoff show that at least in 
present relativistic theory the Compton wave­
length of the electron does not provide a suitable 
critical wave-length for the problem in question. 
It therefore seems most probable to us that a 
new length will be involved in a correct solution, 
above which the present quantum theory will 
have a kind of validity and below which new 
phenomena will have to be taken into account. 
It would seem likely that only in this way can 
the correspondence principle be satisfied. It is 
not satisfied by Heitler's proposals, and that in 
the last analysis is why they are unsatisfactory. 
In any case, we believe that the simple problem 
here considered may afford a useful test of 
future theories of radiation. 

creased by shaking it on a vibrating table. 194 
grams of the powder formed a layer l j " thick, 
containing 0.255 X1024 atoms/cm2. A sample of 
normal boron powder was prepared in the same 
way. The normal sample contained 200 grams of 
powder and had the same number of atoms per 
cm2 as the enriched sample. 

The experiments at neutron energies up to 
1500 kev were carried out using neutrons ob­
tained by bombarding Li with protons acceler­
ated by the University of Wisconsin's electro­
static generator. For the experiments at 3 Mev 
the neutrons were produced by bombarding D2O 
ice with 200-kev deuterons obtained by means 
of a Cockcroft-Walton set. 

The cross section for the scattering of neutrons 
through angles greater than 30° was measured. 
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The cross section of boron for the scattering of fast neutrons through angles greater than 30° 
was measured at neutron energies between 0.2 and 3 Mev. 


